「线段树」
Update on A.D.2019-09-23
模板
struct Segment_Tree {
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid ((l + r) >> 1)
ll ans[_ << 2], tag[_ << 2];
inline void pushup(ll p) { ans[p] = ans[ls] + ans[rs]; }
inline void pushdown(ll p, ll l, ll r) {
ans[ls] += (mid - l + 1) * tag[p];
tag[ls] += tag[p];
ans[rs] += (r - mid) * tag[p];
tag[rs] += tag[p];
tag[p] = 0;
}
void build(ll p, ll l, ll r) {
if(l == r) {
ans[p] = a[l];
return;
}
build(ls, l, mid);
build(rs, mid + 1, r);
pushup(p);
}
void update(ll p, ll l, ll r, ll ul, ll ur, ll k) {
if(ul <= l && r <= ur) {
ans[p] += (r - l + 1) * k;
tag[p] += k;
return;
}
if(tag[p]) pushdown(p, l, r);
if(ul <= mid) update(ls, l, mid, ul, ur, k);
if(ur > mid) update(rs, mid + 1, r, ul, ur, k);
pushup(p);
}
ll query(ll p, ll l, ll r, ll ql, ll qr) {
if(ql <= l && r <= qr) return ans[p];
if(tag[p]) pushdown(p, l, r);
ll res = 0;
if(ql <= mid) res += query(ls, l, mid, ql, qr);
if(qr > mid) res += query(rs, mid + 1, r, ql, qr);
return res;
}
#undef ls
#undef rs
#undef mid
}T;
题目
维护可加性变量解决问题
P3707 [SDOI2017]相关分析
记$\sum = \sum_{i=L}^{R}$
Query
下传Tag:先$upd$后$addX \quad addY$
维护值:$t1=\sum x$ | $t2=\sum y$ | $t3=\sum xy$ | $t4=\sum x^2$
维护Tag:$addX \quad addY$
Add
下传Tag:先$upd$后$addX \quad addY$
顺序:先$t3,t4$后$t1,t2$
Update
自然数平方和:
1.$\forall i \in [L,R]\quad x_i=i\ \ y_i=i$
下传Tag:先$upd$后$addX \quad addY$
清空Tag $addX \quad addY$
标记Tag $upd$
2.ADD L R S T
Code
#include <iostream>
#include <cstdio>
#define ll long long
using namespace std;
const int N = 100005;
int n, m;
double X[N], Y[N];
struct Segment_Tree
{
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid ((l + r) >> 1)
bool upd[N << 2];
double x[N << 2], y[N << 2];
double t1[N << 2], t2[N << 2], t3[N << 2], t4[N << 2];
inline void pushup(ll p)
{
t1[p] = t1[ls] + t1[rs];
t2[p] = t2[ls] + t2[rs];
t3[p] = t3[ls] + t3[rs];
t4[p] = t4[ls] + t4[rs];
}
inline void pushdown(ll p, ll l, ll r)
{
double L = mid - l + 1, R = r - mid;
if(upd[p]) {
double Ll = l, Lr = mid, Rl = mid + 1, Rr = r;
t1[ls] = t2[ls] = (Lr - Ll + 1.0) * (Lr + Ll) / 2.0;
t1[rs] = t2[rs] = (Rr - Rl + 1.0) * (Rr + Rl) / 2.0;
t3[ls] = t4[ls] = Lr * (Lr + 1.0) * (2.0 * Lr + 1.0) / 6.0 - Ll * (Ll - 1.0) * (2.0 * Ll - 1.0) / 6.0;
t3[rs] = t4[rs] = Rr * (Rr + 1.0) * (2.0 * Rr + 1.0) / 6.0 - Rl * (Rl - 1.0) * (2.0 * Rl - 1.0) / 6.0;
upd[ls] = upd[rs] = upd[p]; upd[p] = 0;
x[ls] = x[rs] = y[ls] = y[rs] = 0;
}
if(x[p] || y[p]) {
t3[ls] += x[p] * t2[ls] + y[p] * t1[ls] + L * x[p] * y[p];
t3[rs] += x[p] * t2[rs] + y[p] * t1[rs] + R * x[p] * y[p];
}
if(x[p]) {
t4[ls] += 2 * x[p] * t1[ls] + L * x[p] * x[p];
t4[rs] += 2 * x[p] * t1[rs] + R * x[p] * x[p];
t1[ls] += L * x[p];
t1[rs] += R * x[p];
x[ls] += x[p];
x[rs] += x[p];
x[p] = 0;
}
if(y[p]) {
t2[ls] += (double)L * y[p];
t2[rs] += (double)R * y[p];
y[ls] += y[p];
y[rs] += y[p];
y[p] = 0;
}
}
void build(ll p, ll l, ll r)
{
if(l == r) {
t1[p] = X[l];
t2[p] = Y[l];
t3[p] = X[l] * Y[l];
t4[p] = X[l] * X[l];
return;
}
upd[p] = x[p] = y[p] = 0;
build(ls, l, mid);
build(rs, mid + 1, r);
pushup(p);
}
void add(ll p, ll l, ll r, ll ql, ll qr, double S, double T)
{
if(ql <= l && r <= qr) {
double len = (r - l + 1);
t3[p] += S * t2[p] + T * t1[p] + len * S * T;
t4[p] += 2 * S * t1[p] + len * S * S;
t1[p] += len * S;
t2[p] += len * T;
x[p] += S; y[p] += T;
return;
}
pushdown(p, l, r);
if(ql <= mid) add(ls, l, mid, ql, qr, S, T);
if(qr > mid) add(rs, mid + 1, r, ql, qr, S, T);
pushup(p);
}
void update(ll p, ll l, ll r, ll ql, ll qr) {
if(ql <= l && r <= qr) {
t1[p] = t2[p] = (double)(r - l + 1.0) * (l + r) / 2.0;
t3[p] = t4[p] = (double)r * (r + 1.0) * (2.0 * r + 1) / 6.0 - (double)l * (l - 1.0) * (2.0 * l - 1.0) / 6.0;
x[p] = y[p] = 0;
upd[p] = 1;
return;
}
pushdown(p, l, r);
if(ql <= mid) update(ls, l, mid, ql, qr);
if(qr > mid) update(rs, mid + 1, r, ql, qr);
pushup(p);
}
double query(ll p, ll l, ll r, ll ql, ll qr, ll f) {
if(ql <= l && r <= qr) {
if(f == 1) return t1[p];
if(f == 2) return t2[p];
if(f == 3) return t3[p];
if(f == 4) return t4[p];
}
pushdown(p, l, r);
double res = 0;
if(ql <= mid) res += query(ls, l, mid, ql, qr, f);
if(qr > mid) res += query(rs, mid + 1, r, ql ,qr, f);
return res;
}
#undef ls
#undef rs
#undef mid
};
struct Segment_Tree Tree;
int main()
{
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%lf", &X[i]);
for(int i = 1; i <= n; i++) scanf("%lf", &Y[i]);
Tree.build(1, 1, n);
int opt, L, R; double S, T;
while(m--)
{
scanf("%d", &opt);
if(opt == 1)
{
scanf("%d %d", &L, &R);
double t1 = Tree.query(1, 1, n, L, R, 1);
double t2 = Tree.query(1, 1, n, L, R, 2);
double t3 = Tree.query(1, 1, n, L, R, 3);
double t4 = Tree.query(1, 1, n, L, R, 4);
double a_ = (t3 - (t1 * t2) / (double)(R - L + 1)) / (t4 - (t1 * t1) / (double)(R - L + 1));
printf("%.10lf\n", a_);
}
else if(opt == 2)
{
scanf("%d %d %lf %lf", &L, &R, &S, &T);
Tree.add(1, 1, n, L, R, S, T);
}
else if(opt == 3)
{
scanf("%d %d %lf %lf", &L, &R, &S, &T);
Tree.update(1, 1, n, L, R);
Tree.add(1, 1, n, L, R, S, T);
}
}
return 0;
}
Tag的用法
区间01取反xor
区间翻转rev
区间最长连续1/0
区间min/max子段和
P2572 [SCOI2010]序列操作
扫描线
矩形面积并
P1502 窗口的星星
P1856 [USACO5.5]矩形周长Picture
二维线段树
树套树
P3437 [POI2006]TET-Tetris 3D
其它
Luogu P2061 [USACO07OPEN]城市的地平线City Horizon
简单题
算法
线段树 + 离散化
思路
对$(x,y,h)$的左右端点$x,y$进行离散化,离散化前的原值记为$val[i]$,对每个矩形按高度$h$从小到大排序。
设离散化后的端点有$M$个,则对如图所示$M-1$个规则矩形编号为$[1,M-1]$,可以由$h_{[i, i+1]}\times(val[i+1] - val[i])$得出第$i$个矩形的面积。
开一颗区间为$[1,M-1]$的线段树,按$h$从小到大依次对线段树区间覆盖,可以保证高的矩形覆盖了低的矩形的区间,具体操作为对离散化后的$(x,y,h)$,进行线段树$[x,y-1]$区间覆盖$h$值,最终$i$点存储$h_{[i,i+1]}$的最大值。
$h_{[i, i+1]}$可以通过线段树单点查询$i$点求出。
答案:$\sum{i=1}^{M-1}h{[i, i+1]}\times(val[i+1] - val[i])$
代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#define ll long long
using namespace std;
const int N = 80005;
int n, b[N], val[N];//b[]:离散化数组
struct Line { int x, y, h; }a[N];//存储每个矩形
bool cmp(Line a, Line b) { return a.h < b.h; }
int ans[N << 2];//线段树数组
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid ((l + r) >> 1)
void update(int p, int l, int r, int ul, int ur, int k)
{
if(ul <= l && r <= ur) { ans[p] = k; return; }
if(ans[p]) ans[ls] = ans[rs] = ans[p], ans[p] = 0;//区间覆盖直接下推
if(ul <= mid) update(ls, l, mid, ul, ur, k);
if(ur > mid) update(rs, mid + 1, r, ul, ur, k);
}
ll query(int p, int l, int r, int x)//单点查询
{
if(l == r) return ans[p];
if(ans[p]) ans[ls] = ans[rs] = ans[p], ans[p] = 0;//区间覆盖直接下推
if(x <= mid) return query(ls, l, mid, x);
if(x > mid) return query(rs, mid + 1, r, x);
}
#undef ls
#undef rs
#undef mid
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; i++)
{
scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].h);
b[i] = a[i].x; b[n + i] = a[i].y;//离散化数组记录下所有x,y
}
sort(b + 1, b + 2 * n + 1);//排序
int _n = unique(b + 1, b + 2 * n + 1) - (b + 1);//去重,_n为去重后x,y端点个数
for(int i = 1; i <= n; i++)
if(a[i].x != a[i].y)//x=y没有作用
{
int x = a[i].x, y = a[i].y;
a[i].x = lower_bound(b + 1, b + _n + 1, a[i].x) - b;
a[i].y = lower_bound(b + 1, b + _n + 1, a[i].y) - b;//离散化
val[a[i].x] = x; val[a[i].y] = y;//原值
}
sort(a + 1, a + n + 1, cmp);//按h从小到大排序
for(int i = 1; i <= n; i++)
if(a[i].x != a[i].y)//防止y-1<x
update(1, 1, _n - 1, a[i].x, a[i].y - 1, a[i].h);//更新,注意结点个数是_n-1,端点y要变成矩形区域y-1,可以画图理解一下,相当于把端点x右边的矩形区域编号为x
ll res = 0;
for(int i = 1; i < _n; i++)
res += query(1, 1, _n - 1, i) * (val[i + 1] - val[i]);
printf("%lld\n", res);
return 0;
}
本文由 落影汐雾 原创,采用 保留署名-非商业性使用-禁止演绎 4.0-国际许可协议
本文链接:https://x.lyxw.xyz/2019/segment_tree/